Siderophore-promoted dissolution of chromium from hydroxide minerals.

نویسندگان

  • Owen W Duckworth
  • Martin M Akafia
  • Megan Y Andrews
  • John R Bargar
چکیده

Biomolecules have significant impacts on the fate and transport of contaminant metals in soils and natural waters. Siderophores, Fe(iii)-binding agents that are exuded by microbes and plants, may form strong complexes with and promote the dissolution of contaminant metal ions, such as Co(iii), U(iv), or Pu(iv). Although aqueous Cr(iii)-siderophore complexes have been recognized in the laboratory setting for almost 40 years, few studies have explored interactions of siderophores with Cr-bearing minerals or considered their impacts on environmental chemistry. To better understand the possible effects of siderophores on chromium mobility, we conducted a series of dissolution experiments to quantify the dissolution rates of Cr(iii)(OH)3 in the presence of hydroxamate, catecholate, and α-hydroxycarboxylate siderophores over a range of environmentally relevant pH values. At pH = 5, dissolution rates in the presence of siderophores are similar to control experiments, suggesting a predominantly proton-promoted dissolution mechanism. At pH = 8, the sorption of the siderophores desferrioxamine B and rhizoferrin can be modeled by using Langmuir isotherms. The dissolution rates for these siderophores are proportional to the surface concentrations of sorbed siderophore, and extended X-ray absorption fine structure spectra of dissolution products indicates the formation of Cr(iii)HDFOB(+) and Cr(iii)rhizoferrin(3-) complexes, suggesting a ligand-promoted dissolution mechanism at alkaline pH. Because siderophores promote Cr(iii)(OH)3 dissolution at rates similar in magnitude to those of iron hydroxides and the resulting Cr(iii)-siderophore complexes may be persistent in solution, siderophores could potentially contribute to the mobilization of Cr in soils and sediments where it is abundant due to geological or anthropogenic sources.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Steady-state dissolution kinetics of aluminum-goethite in the presence of desferrioxamine-B and oxalate ligands.

This paper reports steady-state dissolution rates of synthetic low-substitution Al-goethites (mol % Al < 10) at pH 5 in the presence of the trihydroxamate siderophore, desferrioxamine B (DFO-B), and the common biological ligand, oxalate. The siderophore-promoted Fe release rate increased both with the level of Al substitution and with DFO-B concentration up to about 100 microM, after which a pl...

متن کامل

The kinetics of mixed Ni-Al hydroxide formation on clay and aluminum oxide minerals: A time-resolved XAFS study

In this study kinetic investigations were combined with X-ray Absorption Fine Structure (XAFS) measurements to determine Ni sorption processes on pyrophyllite, gibbsite, and montmorillonite over extended time periods (min-months). The kinetic investigations revealed that Ni sorption reactions (pH 5 7.5, [Ni]initial 5 3 mM, I 5 0.1 M (NaNO3)) were initially fast (8–35% of the initial Ni was remo...

متن کامل

Role of microbial iron reduction in the dissolution of iron hydroxysulfate minerals

[1] Iron-hydroxysulfate minerals can be important hosts for metals such as lead, mercury, copper, zinc, silver, chromium, arsenic, and selenium and for radionuclides such as Ra. These mineral-bound contaminants are considered immobilized under oxic conditions. However, when anoxic conditions develop, the activities of sulfateor iron-reducing bacteria could result in mineral dissolution, releasi...

متن کامل

Determination of Geochemical Bio-Signatures in Mars-Like Basaltic Environments

Bio-signatures play a central role in determining whether life existed on early Mars. Using a terrestrial basalt as a compositional analog for the martian surface, we applied a combination of experimental microbiology and thermochemical modeling techniques to identify potential geochemical bio-signatures for life on early Mars. Laboratory experiments were used to determine the short-term effect...

متن کامل

Speciation and fate of trace metals in estuarine sediments under reduced and oxidized conditions, Seaplane Lagoon, Alameda Naval Air Station (USA)

We have identified important chemical reactions that control the fate of metal-contaminated estuarine sediments if they are left undisturbed (in situ) or if they are dredged. We combined information on the molecular bonding of metals in solids from X-ray absorption spectroscopy (XAS) with thermodynamic and kinetic driving forces obtained from dissolved metal concentrations to deduce the dominan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science. Processes & impacts

دوره 16 6  شماره 

صفحات  -

تاریخ انتشار 2014